PROBABILISTIC ESTIMATION OF CHIRP INSTANTANEOUS FREQUENCY USING GAUSSIAN PROCESSES

arXiv: 2205.06306

Zheng Zhao

Uppsala Universitet

2 June 2022

Chirp signals are defined by

$$\alpha(t)\sin\Big(\phi_0 + 2\pi \int_0^t f(s)\,\mathrm{d}s\Big),\tag{1}$$

where

- α : instantaneous amplitude.
- ϕ_0 : initial phase.
- ► *f*: instantaneous frequency (IF)

INTRODUCTION

Figure: Some chirp examples with linear, quadratic, and geometric IFs.

Suppose that we have chirp measurements $\{y_k\}_{k=1}^T$ from

$$Y_k \coloneqq Y(t_k) = \alpha(t_k) \sin\left(\phi_0 + 2\pi \int_0^{t_k} f(s) \,\mathrm{d}s\right) + \xi_k,$$

$$\xi_k \sim \mathcal{N}(0, \Xi).$$
(2)

The goal is to estimate *f* from the data $y_{1:T} := \{y_k\}_{k=1}^T$.

Moreover, the amplitude α is assumed unknown.

PROBLEM FORMULATION

Figure: An example of chirp signals that we aim to dealing with. This chirp is contaminated by unknown random noises, making it hard to infer its frequency.

Classical problem for > 60 years. A plethora of classical methods:

- Hilbert transform
- First-moment power spectrum
- Polynomial regression
- Adaptive notch filter

▶ ..

Since we are members of the Bayesian cult, we would like to put a prior on f then solve its posterior distribution.

We could model the unknown f by a Gaussian process (GP), in the way that

$$f(t) \coloneqq g(V(t)),$$

$$V(t) \sim \operatorname{GP}(0, C_V(t, t')),$$
(3)

where g is any positive bijection.

We select/design/hand-craft C_V based on the information (e.g., continuity) we know about the true IF.

For example, if the true IF is continuously differentiable, then we can choose C_V from that of Matérn 3/2.

GPs are function-valued random variables distributed according to the Gaussian measure.

Figure: Left: six GP samples of V according to a Matérn $3/2 C_V$. Right: a GP regression example under this C_V .

SOLUTION IN GP

Putting it altogether, we have the following GP regression model

$$V(t) \sim \operatorname{GP}(0, C_V(t, t')),$$

$$Y_k = \alpha(t_k) \sin\left(\phi_0 + 2\pi \int_0^{t_k} g(V(s)) \,\mathrm{d}s\right) + \xi_k$$
(4)

from which we want to obtain

$$p_{V(t)|Y_{1:T}}(v|y_{1:T}), \quad \forall t \in [0,\infty).$$
 (5)

But it's kinda hard ... not to mention that α is unknown! Seems dead end.

Is there any way to "eliminate" α , sin(...), and $\int \cdots$ in the model?

Yep, we could put a prior on the chirp signal too! For instance, find another GP

$$X(t) \sim \operatorname{GP}(m_X(t;f), C_X(t,t';f)),$$
(6)

such that the samples of it are valid chirps as per Equation (1).

Question is how to find such a pair of m_X and C_X . Since chirps are periodic, m_X and C_X should have periodic structures as well.

GP guys will immediately recall the periodic covariance function

$$C_X(t,t';f) = \sigma^2 e^{-2\sin\left(\pi f(t-t')\right)^2/\ell^2}.$$
(7)

Samples from *X* using this cov function more or less look like this:

Looks okay-ish to model chirps, but f must be constant, or C_X is positive definite no more. Kinda no go.

Suppose that we have found a valid and meaningful pair (m_X, C_X) .

Then the "supposedly-working" GP regression model reads

$$V(t) \sim \operatorname{GP}(0, C_V(t, t')),$$

$$X(t) \mid V(t) \sim \operatorname{GP}(m_X(t; V), C_X(t, t'; V)),$$

$$Y_k = HX(t) + \xi_k.$$
(8)

- HX(t) stands for the chirp.
- ► *X* is parametrised by the IF f(t) = g(V(t)).

But it's still not so easy to obtain $p_{V(t)|Y_{1:T}}(v|y_{1:T})$:

- 1. V and X are jointly not a GP. Have to use, e.g., MCMC, VI.
- 2. Computation is a problem! Need to solve many matrix inversions of dimension *T*, but signals are usually lengthy ...

Why not use sparse (pseudo-points) methods to approximate the full-rank covariance matrices? This is standard for solving large-scale GP regression problems.

Unfortunately, the sparse approximations have side effects in this chirp application, because they introduce down-samplings!

Bear in mind: specifying the GP mean and cov functions is not the only way to construct a GP.

A number of alternatives, for instance,

Stochastic (partial) differential equations.

- Precision matrices (i.e., GMRFs).
- Couplings
- …

For this chirp application, we will use the $\underline{\text{SDE}}$ construction. Reasons being

- Signals are temporal.
- Markov property for cheap computation (linear in time) hence, no *T*-huge cov matrix inversion.
- No need to explicitly select/design/hand-craft the mean and cov functions.

All we need to do is to replace the GPs in Equation (8) with SDE-GPs.

The SDE-GP prior *X* for chirp signals we use is

$$dX(t) = \begin{bmatrix} -\lambda & -2\pi f \\ 2\pi f & -\lambda \end{bmatrix} X(t) dt + b dW_X(t),$$

$$X(0) \sim N(m_0^X, P_0^X),$$
(9)

Recall that solutions to linear SDEs are GPs with implicitly defined mean and cov functions.

To understand that this X is a reasonable prior for chirp signals, let's take a look at its mean and cov functions.

X's mean m_X indeed carries (damped) chirps, in the sense that

$$\mathbb{E}[X(t)] = \begin{bmatrix} \alpha e^{-\lambda t} \cos(\phi_0 + 2\pi f t) \\ \alpha e^{-\lambda t} \sin(\phi_0 + 2\pi f t) \end{bmatrix}$$
(10)

which is the solution to a harmonic differential equation.

$$dX(t) = \begin{bmatrix} -\lambda & -2\pi f \\ 2\pi f & -\lambda \end{bmatrix} X(t) dt.$$
(11)

SOLUTION IN SDE

As for X's covariance function C_X , please refer to the paper to see its formulation. It plots like this:

Figure: $C_X(t,t')$ evaluated at Cartesian $[0,10] \times [0,10]$. Parameters are f = 0.5 Hz, $\lambda = 0.1$, b = 0.5, and $P_0^X = 1.25I_2$. It is clear to see the periodic structure, and the fading effect on the anti-diagonal due to the damping.

Recall our prior

$$dX(t) = \begin{bmatrix} -\lambda & -2\pi f \\ 2\pi f & -\lambda \end{bmatrix} X(t) dt + b dW_X(t),$$

$$X(0) \sim N(m_0^X, P_0^X),$$
(12)

We can immediately replace the constant f with a time-varying one, for example, a GP! No need to worry about the positive definiteness of C_X .

SOLUTION IN SDE

What does the cov function C_X look like if we use a time-varying f?

Figure: See that the periodicity changes over time driven by the value of f.

We then need to construct V as SDE-GP as well. For the sake of pedagogy, we use the Matérn 3/2 GP.

$$f(t) = g(V(t)),$$

$$d \begin{bmatrix} V(t) \\ \frac{dV(t)}{dt} \end{bmatrix} = M \begin{bmatrix} V(t) \\ \frac{dV(t)}{dt} \end{bmatrix} dt + L dW_V(t),$$

$$V(0) \sim N(0, P_0^V)$$
(13)

where

$$M = \begin{bmatrix} 0 & 1 \\ -3/\ell^2 & -2\sqrt{3}/\ell \end{bmatrix}, \quad L = \begin{bmatrix} 0 \\ 2\sigma(\sqrt{3}/\ell)^{3/2} \end{bmatrix}, \quad P_0^V = \begin{bmatrix} \sigma^2 & 0 \\ 0 & 3\sigma^2/\ell^2 \end{bmatrix}.$$

This is same as with saying

$$V(t) \sim \text{GP}(0, C_{\text{Mat.3/2}}(t, t')).$$
 (14)

Define $U(t) := \begin{bmatrix} X(t) & V(t) & \frac{\mathrm{d}V(t)}{\mathrm{d}t} \end{bmatrix}$. Putting all together, our chirp IF estimation model is

$$dU(t) = A(U(t)) dt + B dW(t),$$

$$U(0) \sim p_{U(0)}(u),$$

$$Y_k = H U(t_k) + \xi_k,$$

(15)

$$A(U(t)) \coloneqq \begin{bmatrix} -\lambda & -2\pi g(V(t)) & 0 & 0 \\ 2\pi g(V(t)) & -\lambda & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -3/\ell^2 & -2\sqrt{3}/\ell \end{bmatrix} U(t)$$
$$B \coloneqq \begin{bmatrix} b & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2\sigma(\sqrt{3}/\ell)^{3/2} \end{bmatrix}, \quad H \coloneqq \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}.$$

SOLUTION IN SDE

To see that this prior U is a suitable model for chirp signals, let's draw some samples from HU.

Figure: It can generate a rich variety of randomised chirp signals by tuning the model parameters.

Solving the posterior density

$$p_{U(t)|Y_{1:T}}(u|y_{1:T}), \quad \forall t \in [0,\infty)$$
(16)

is essentially a (continuous-discrete) stochastic filtering and smoothing problem.

A plenty of solvers ...

- ► Gaussian filters and smoothers (e.g., EKFSs, UKFSs).
- Particle filters and smoothers.

▶ ...

Synthetic test model

$$\begin{split} f(t) &= a b \cot(t) \csc(t) e^{-b \csc(t)} + c, \quad t \in (0, \pi), \\ Y_k &= \alpha(t_k) \sin\left(2\pi \int_0^{t_k} f(s) ds\right) + \xi_k, \quad \xi_k \sim \mathrm{N}(0, 0.1), \end{split}$$

EXPERIMENTS

EXPERIMENTS

RMSE (× 10^{-1})	$\alpha(t) = 1$	$\alpha(t) = \mathrm{e}^{-0.3t}$	$\alpha(t)$ is a random process
Hilbert transform	7.13 ± 2.35	11.74 ± 11.06	54.63 ± 25.58
Spectrogram	1.53 ± 0.08	1.82 ± 0.18	8.17 ± 4.31
Polynomial MLE	8.87 ± 0.09	8.90 ± 0.13	10.01 ± 4.33
ANF	2.13 ± 0.16	3.05 ± 0.31	37.77 ± 23.57
EKFS MLE old model	1.09 ± 0.20	19.53 ± 18.14	41.46 ± 19.48
GHFS MLE old model	0.67 ± 0.17	3.84 ± 7.95	$39.47 \pm 19.36 \dagger$
EKFS MLE	0.70 ± 0.17	0.98 ± 0.24	6.37 ± 7.04
GHFS MLE	0.65 ± 0.16	0.93 ± 0.24	5.36 ± 5.59
CD-EKFS MLE	1.53 ± 0.67	2.86 ± 2.26	6.05 ± 6.55
CD-GHFS MLE	0.72 ± 0.18	1.16 ± 0.34	$4.91 \pm 3.74 \ddagger$

† and ‡ encounter 1 and 15 NaN numerical errors, respectively.

REAL APPLICATION

Frequency estimation of gravitational wave GW150914.

Tack!

Scan to access the code and preprint.
https://github.com/spdes/chirpgp

