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INTRODUCTION

Chirp signals are defined by

α(t)sin
(
φ0 +2π

∫ t

0
f (s)ds

)
, (1)

where
Ï α: instantaneous amplitude.
Ï φ0: initial phase.
Ï f : instantaneous frequency (IF)
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INTRODUCTION
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Figure: Some chirp examples with linear, quadratic, and geometric IFs.
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PROBLEM FORMULATION

Suppose that we have chirp measurements {yk}Tk=1 from

Yk :=Y(tk)=α(tk)sin
(
φ0 +2π

∫ tk

0
f (s)ds

)
+ξk,

ξk ∼N(0,Ξ).
(2)

The goal is to estimate f from the data y1:T := {yk}Tk=1.

Moreover, the amplitude α is assumed unknown.
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PROBLEM FORMULATION
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Figure: An example of chirp signals that we aim to dealing with. This chirp is
contaminated by unknown random noises, making it hard to infer its frequency.
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SOLUTION IN GP

Classical problem for > 60 years. A plethora of classical methods:
Ï Hilbert transform
Ï First-moment power spectrum
Ï Polynomial regression
Ï Adaptive notch filter
Ï ...

Since we are members of the Bayesian cult, we would like to put a prior
on f then solve its posterior distribution.
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SOLUTION IN GP

We could model the unknown f by a Gaussian process (GP), in the way
that

f (t) := g(V(t)),
V(t)∼GP

(
0,CV (t, t′)

)
,

(3)

where g is any positive bijection.

We select/design/hand-craft CV based on the information (e.g.,
continuity) we know about the true IF.

For example, if the true IF is continuously differentiable, then we can
choose CV from that of Matérn 3/2.
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SOLUTION IN GP

GPs are function-valued random variables distributed according to the
Gaussian measure.
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Figure: Left: six GP samples of V according to a Matérn 3/2 CV . Right: a GP
regression example under this CV .
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SOLUTION IN GP

Putting it altogether, we have the following GP regression model

V(t)∼GP
(
0,CV (t, t′)

)
,

Yk =α(tk)sin
(
φ0 +2π

∫ tk

0
g(V(s))ds

)
+ξk

(4)

from which we want to obtain

pV(t) |Y1:T (v | y1:T), ∀t ∈ [0,∞). (5)

But it’s kinda hard ... not to mention that α is unknown! Seems dead
end.

Is there any way to “eliminate” α, sin(· · · ), and
∫ · · · in the model?
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SOLUTION IN GP

Yep, we could put a prior on the chirp signal too! For instance, find
another GP

X(t)∼GP
(
mX (t; f ),CX (t, t′; f )

)
, (6)

such that the samples of it are valid chirps as per Equation (1).

Question is how to find such a pair of mX and CX . Since chirps are
periodic, mX and CX should have periodic structures as well.
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SOLUTION IN GP

GP guys will immediately recall the periodic covariance function

CX (t,t′; f )=σ2 e−2sin
(
π f (t−t′)

)2
/`2

. (7)

Samples from X using this cov function more or less look like this:
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Looks okay-ish to model chirps, but f must be constant, or CX is
positive definite no more. Kinda no go.
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SOLUTION IN GP

Suppose that we have found a valid and meaningful pair (mX ,CX ).

Then the “supposedly-working” GP regression model reads

V(t)∼GP
(
0,CV (t, t′)

)
,

X(t) |V(t)∼GP
(
mX (t;V),CX (t,t′;V)

)
,

Yk =HX(t)+ξk.
(8)

Ï HX(t) stands for the chirp.
Ï X is parametrised by the IF f (t)= g(V(t)).
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SOLUTION IN GP

But it’s still not so easy to obtain pV(t) |Y1:T (v | y1:T):

1. V and X are jointly not a GP. Have to use, e.g., MCMC, VI.

2. Computation is a problem! Need to solve many matrix inversions
of dimension T, but signals are usually lengthy ...

Why not use sparse (pseudo-points) methods to approximate the
full-rank covariance matrices? This is standard for solving large-scale
GP regression problems.

Unfortunately, the sparse approximations have side effects in this chirp
application, because they introduce down-samplings!
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SOLUTION IN GP

Bear in mind: specifying the GP mean and cov functions is not the only
way to construct a GP.

A number of alternatives, for instance,

Ï Stochastic (partial) differential equations.
Ï Precision matrices (i.e., GMRFs).
Ï Couplings
Ï ...

13 / 28



SOLUTION IN SDE

For this chirp application, we will use the SDE construction. Reasons
being

Ï Signals are temporal.
Ï Markov property for cheap computation (linear in time) hence, no

T-huge cov matrix inversion.
Ï No need to explicitly select/design/hand-craft the mean and cov

functions.

All we need to do is to replace the GPs in Equation (8) with SDE-GPs.
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SOLUTION IN SDE

The SDE-GP prior X for chirp signals we use is

dX(t)=
[ −λ −2π f
2π f −λ

]
X(t)dt+bdWX (t),

X(0)∼N
(
mX

0 ,PX
0
)
,

(9)

Recall that solutions to linear SDEs are GPs with implicitly defined
mean and cov functions.

To understand that this X is a reasonable prior for chirp signals, let’s
take a look at its mean and cov functions.
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SOLUTION IN SDE

X ’s mean mX indeed carries (damped) chirps, in the sense that

E[X(t)]=
[
αe−λt cos(φ0 +2π f t)
αe−λt sin(φ0 +2π f t)

]
(10)

which is the solution to a harmonic differential equation.

dX(t)=
[ −λ −2π f
2π f −λ

]
X(t)dt. (11)
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SOLUTION IN SDE

As for X ’s covariance function CX , please refer to the paper to see its
formulation. It plots like this:

Figure: CX (t, t′) evaluated at Cartesian [0,10]× [0,10]. Parameters are
f = 0.5 Hz, λ= 0.1, b= 0.5, and PX

0 = 1.25I2. It is clear to see the periodic
structure, and the fading effect on the anti-diagonal due to the damping.
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SOLUTION IN SDE

Recall our prior

dX(t)=
[ −λ −2π f
2π f −λ

]
X(t)dt+bdWX (t),

X(0)∼N
(
mX

0 ,PX
0
)
,

(12)

We can immediately replace the constant f with a time-varying one, for
example, a GP! No need to worry about the positive definiteness of CX .
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SOLUTION IN SDE
What does the cov function CX look like if we use a time-varying f ?

Figure: See that the periodicity changes over time driven by the value of f .
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SOLUTION IN SDE

We then need to construct V as SDE-GP as well. For the sake of
pedagogy, we use the Matérn 3/2 GP.

f (t)= g(V(t)),

d
[

V(t)
dV(t)

dt

]
=M

[
V(t)
dV(t)

dt

]
dt+LdWV (t),

V(0)∼N
(
0,PV

0
) (13)

where

M =
[

0 1
−3/`2 −2

p
3/`

]
, L=

[
0

2σ (
p

3/`)3/2

]
, PV

0 =
[
σ2 0
0 3σ2 /`2

]
.

This is same as with saying

V(t)∼GP
(
0,CMat.3/2(t,t′)

)
. (14)
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SOLUTION IN SDE

Define U(t) :=
[
X(t) V(t) dV(t)

dt

]
. Putting all together, our chirp IF

estimation model is

dU(t)=A
(
U(t)

)
dt+BdW(t),

U(0)∼ pU(0)(u),

Yk =HU(tk)+ξk,
(15)

A(U(t)) :=


−λ −2πg(V(t)) 0 0

2πg(V(t)) −λ 0 0
0 0 0 1
0 0 −3/`2 −2

p
3/`

U(t)

B :=


b 0 0
0 b 0
0 0 0
0 0 2σ (

p
3/`)3/2

 , H := [
0 1 0 0

]
.
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SOLUTION IN SDE

To see that this prior U is a suitable model for chirp signals, let’s draw
some samples from HU.
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Figure: It can generate a rich variety of randomised chirp signals by tuning the
model parameters.
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SOLUTION IN SDE

Solving the posterior density

pU(t) |Y1:T (u | y1:T), ∀t ∈ [0,∞) (16)

is essentially a (continuous-discrete) stochastic filtering and smoothing
problem.

A plenty of solvers ...
Ï Gaussian filters and smoothers (e.g., EKFSs, UKFSs).
Ï Particle filters and smoothers.
Ï ...
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EXPERIMENTS

Synthetic test model

f (t)= abcot(t)csc(t)e−bcsc(t) +c, t ∈ (0,π),

Yk =α(tk)sin
(
2π

∫ tk

0
f (s)ds

)
+ξk, ξk ∼N(0,0.1),
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EXPERIMENTS
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EXPERIMENTS

RMSE (×10−1) α(t)= 1 α(t)= e−0.3t α(t) is a
random process

Hilbert transform 7.13±2.35 11.74±11.06 54.63±25.58
Spectrogram 1.53±0.08 1.82±0.18 8.17±4.31

Polynomial MLE 8.87±0.09 8.90±0.13 10.01±4.33
ANF 2.13±0.16 3.05±0.31 37.77±23.57

EKFS MLE old model 1.09±0.20 19.53±18.14 41.46±19.48
GHFS MLE old model 0.67±0.17 3.84±7.95 39.47±19.36†

EKFS MLE 0.70±0.17 0.98±0.24 6.37±7.04
GHFS MLE 0.65±0.16 0.93±0.24 5.36±5.59

CD-EKFS MLE 1.53±0.67 2.86±2.26 6.05±6.55
CD-GHFS MLE 0.72±0.18 1.16±0.34 4.91±3.74‡

† and ‡ encounter 1 and 15 NaN numerical errors, respectively.
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REAL APPLICATION

Frequency estimation of gravitational wave GW150914.
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Tack!

Scan to access the code and preprint.
https://github.com/spdes/chirpgp

28 / 28

https://github.com/spdes/chirpgp

